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Mean-Square Error Due to Gradiometer Field
Measuring Devices

Charles P. Hatsell

Abstract-Gradiometers use spatial common mode magnetic
field rejection to reduce interference from distant sources. They
also introduce distortion that can be severe, rendering experi-
mental data difficult to interpret. Attempts to recover the mea-
sured magnetic field from the gradiometer output will be M AOMMt 9BSJNE
plagued by the nonexistence of a spatial function for deconvo-
lution (except for first-order gradiometers), and by the high-
pass nature of the spatial transform that emphasizes high
spatial frequency noise. Goals of a design for a facility for mea-
suring biomagnetic fields should be an effective shielded room Fig. 1. Second-order gradiometer. Coils are of equal area and coaxial, with
and a field detector employing a first-order gradiometer. the center coil wound in opposite sense to the outer coils. A. distance be-

tween adjacent coils is the gradiorneter baseline.

I. INTRODUCTION

M EASUREMENT distortions introduced by corn- tial filtering approach to gradiometer design investigated
monly used biomagnetic field measuring devices are by Bruno et al. [6].

addressed in this paper. Comment is also made on the A critical gradiometer dimension is its baseline, A.
difficulties encountered attempting to infer the actual Small A enhances common-mode rejection but decreases
magnetic field from the distorted estimate provided by the sensitivity and increases spatial distortion in the measured
instrument. Effects of instrument noise are also discussed. or apparent field (i.e., the apparent field differs from that
Measurement of extracorporeal magnetic fields arising field that would have been measured with a zero-order
from intracorporeal ionic fluxes (viz., biomagnetic fields) gradiometer, also called a magnetometer). Large A re-
requires solving two fundamental problems: achieving duces distortion and increases sensitivity 'but at the cost
high gain, low noise amplification and reducing the effect of decreased common-mode rejection.
of interfering environmental magnetic fields (e.g., the In any case, the apparent field as measured by the gra-
earth's magnetic field, fields associated with fixed wir- diometer is not the actual field at all, but some mildly to
ing). The former problem is traditionally solved by em- severely distorted version. It is this distortion and its mit-
ploying as an amplifier a superconducting quantum inter- igation that are addressed here. The error that finite coil
ference device (SQUID) [1]. area introduces over a point measurement has been ad-

Rejection of local, interfering fields (which may be 6 dressed elsewhere [31; so to focus attention on the subject
to 10 orders of magnitude larger than the biological fields at hand, it will be ignored here.
of interest) is in part and almost universally approached
by using a detector coil configured to rejeci low-order field
gradients. The rationale for spatial common-mode rejec- II. THE APPARENT FIELD
tion is that the far field of a source tends to contain pre-
dominantly low-order spatial components. The most pop- Suppose our second-order gradiometer is aligned along
ular coil configuration is a second-order gradiometer with the z-axis as in Fig. 2. If the field strength at the lower
coaxial, equal-area coils as shown in Fig. 1. Practically, gradiometer coil at z = 0 is H.(x, y, z), then the apparent
a second order gradiometer has become widely accepted field measured by the second-order gradiometer would be
as a reasonable tradeoff between interference rejection G(x, y, z) = H:(x, y, z) - 2H(x, y, z +
and instrument sensitivity. There is an extensive literature
discussing various gradiometer configurations that will not + H(x, y, z + 2A) (A)
be repeated here [21; especially relevant is a discrete spa-

and it follows directly that for equal coil cross-section, an

Manuscript received August 8. 1990; revised July 13. 1990. nth-order gradiometer would give
The author was with the Harry G. Amistrong Aerospace Medical Re-

search Laboratory, Wright-Pattemson Air Force Base, OH. fie no%, with (n\
the Human Systems Division. HSD/XA, Brooks Air Force Base. TX 78235. = )"fJ(x, y, : + mA). (2)

IEEE Log Number9144685. m= t
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Fig. 2. Second-order gradiometer aligned with z-axis. X

Fig. 3. nth-order gradiometer aligned with an axis with direction cosines
q, r, and s.

While the second-order gradiometer is clearly most pop-
ular, the following development will be for nth-order
equal coil area gradiometers. and the fact that V2 ' = 0 (measurement uncertainties are

Consider an nth-order gradiometer oriented as shown ignored),
in Fig. 3. The center of the lower coil is located at (x, y,
z), and the direction cosines of the gradiometer axis are VdT = dV . (
q, r, s giving avs

q2 + r2 + s2 = 1 (3) Now let ii be the unit normal to the surface S, and define
a differential volume dV enclosed by S and an external

and surface S' everywhere E distant from S. Again from

i = qdi, + r iy + si, (4) Green's theorem

where U- is the unit vector of the gradiometer axis and VIVodr= d - , .d ' dg.
6', ,, d, are the coordinate axis unit vectors. In a man- Vd' VS S
ner similar to that leading to (2). the apparent field mea-
sured by an nth-order, equal coil area gradiometer is (12)

an /X yZ=1With d = n ds, and d§' = i' ds, an approximation for
G"(x, , z) = n , o + imqA, y (12) is

+ mrA, z + msA). (5) E L Vo . Vo ds 7VO R' ds - L OV i " n ds

III. MEAN-SQUARE MEASUREMENT ERROR (13)
Throughout, a source-free measurement space is as- which as e 0 gives

sumed so the magnetic field H1 is conservative and deter-
mined by its scalar poteiAtial, (p; V0 V, ds (1 4 . (14)

H ,, -Vp (6) L

and Note that the left-hand side of (14) is the integrated-square
field measurement error caused by measuring with a gra-

= 0. (7) diometer rather than a magnetometer.

A vector measurement error is defined to be K, where
= H- (8) IV. AN EXAMPLE

and the following scalar potentials are implicitly defined: The familiar case of a current dipole embedded a units
beneath a semi-infinite volume conductor will be ad-

G= -Vpg (9) dressed. The dipole is taken as y-directed and the surface
and normal is ii = d. For this conductor geometry (14) be-

comes
S= ) 0)

where (p. is the scalar potential associated with the appar- Vo • Vo dx dy = '2  - r dx dy.
ent field G. If a volume V of this source-free space is aZ - -5

enclosed by a surface S, then from Green's first identity (15)
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It may be verified directly [4] that for this geometry the n-3

solution to Laplace's equation is ?1-2

cc5
= E(a, 13) exp (i2irox + i2ro3y) 1

g 11 ERROR .5n 6RAOIOMUME ORDER
exp [-2r(o2 + 32 )"2Z] dot d3 (16) -

where E(ce, 3) is the two-dimensional Fourier transform .25

of it, over the xy plane for fixed z and is determined from
boundary conditions; (x and f3 are variables of integration. i 2 3 4 5
Applying Parseval's theorem to (15), the square measure-
ment error Mbecomes Fig. 4. Root-integrated-square- measurement error due to a gradiometer oforder n and ba,elire A. Current source is a dipole parallel to and a units

beneath the planar surface of a conducting half-space. e is given by (24).

where which is seen to be dependent only on the ratio of dipole
depth a to gradiometer baseline A and gradiometer order

IE[2 = IF1 I - T12  (18) n. Fig. 4 shows a plot of this result for several represen-

and, from Cuffin and Cohen [5], tative parameters.

F(a, 13) = iPa exp [-27ra( 2 + 2)1/2/ V. MAGNETIC FIELD RECOVERY
[4r(c +02)] (19) The previous development suggests an inverse trans-

form technique may be useful for recovery of the mag-

on the z = 0 plane; Py. is the current dipole moment. Note netic field spatial distribution from the gradiometer output
that (2) expiesses the gradiometer output as a linear com- spatial distribution. This technique would involve com-
bination of H. shifted in z; therefore, in the transform do- puting the spatial Fourier transform of the gradiometer
main there will be some function T(c, 3) that relates the output data and then inverting the product of this trans-
transform of G", say gl to the transform of H, say h, in form with 1 /T(x, 3) and an appropriate window func-
the following manner tion. Equivalently, deconvolution could be performed in

g (a, 13) = T(a, 13) .h.(a, 13). (20) the spatial domain by convolving the gradiometer data
with the inverse transform of I /T(a, 13), applying an ap-

Hence (2) may be expressed in the transform domain as propriate spatial window. Unfortunately, several prob-
i ( lems would arise in such an attempt.

g'(ce, 3) = h.(a, 13) Z (- ) Spatial deconvolution without windowing is not possi-
,n,0 miol ble because 1/T(a, 13) is not Fourier invertable, and even

exp [-2rn(ot2 + [32)1/2A) (21) with low-pass windowing is noninvertable for gradiome-
ter order greater than one due to the singularity at the or-

and it follows from the binomial theorem that igin in transform space. Invertability would require a win-

T(ax, 13) = [1 - exp (-27r(a 2 + P 2)12A)]". (22) dow that is zero in the vicinity of the transform space
origin; this could produce acceptable results were it not

It is useful to accomplish (17) in polar coordinates by the for noise contributed by the instrument proximal to the
substitutions a = p cos 0, 13 = p sin 0, and dci d3 = p gradiometer. This temporal noise process, which is as-
dp dO, resulting in sumed zero-mean with rms value n0, produces a spatial

co 2 white noise process of zero-mean with mean-square value
M = [Py/(4r)2 ] o oqo given by

Cos 2 0e-4 ap l  - TI2 p dp dO. (23) no = (n0)r I W(p)/T(p)12 p dp (25)

This integral can be evaluated in closed form. The result where p = V + 132, and W(p) is a windowing function
when expressed as a fraction e of the total magnetic field with properties as previously discussed.
energy is As an example, the dipole model previously discussed

will be used. Let W(p) be a Hanning window modified as
,n follows:

e = 1- 8(a/A) 2 Z (- 1)m/(2a//A + 0)2  P pi,

/2n \'1/
/A2n 2n +M2W(p) jI + Cos /2

+ 4(a/A)2  3 (_l),/(2a/A + PM O ,
-o 

6m 0,)
(24) (26)
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where Pm is chosen to encompass a fraction 5' of the en- baseline=2cm, dipole depth=lcm
ergy in the current dipole, and p, = pM/100. Using (19), peak field=.5pT.noise=.2pT 10 averages
it is easy to show that - mean fiel d - g'doeterestiate ieldoutlaIt

P,= 1+= Ira (27) 0.60

where the energy excluded for p, > 0 has been ignored. 0.5?

Since the additive noise is zero-mean, the expected 0.40

value of the conditional mean estimate is the inverse of 0 0
its windowed spatial transform, i.e.,

0.20

E{At (x, y)} = h (a, 13) W(p) 0.10

exp (i2wrcx + i2rf3y) da df3 (28) 0.00

where p = , , h. is the two dimensional transform o

of H., is the estimate of H., and E {. } denotes expec- Xlcr
tation. Fig. 5. True magnetic field z.component, its estimate using transform

E {: (x, y) } can be calculated for the dipole model by techniques, and the output of the gradiometer from which the estimate was
derived. Measurement is along th x-axis at z = 0. Current source is a

using (19) and (26) in (28) and transforming to polar co- v-directed dipole parallel to and I cm beneath the planar (z = 0) surface
ordinates as was done in (23). Integrating first over 0 gives of a conducting half-space. Dipole moment is such that the magnetic field
for the z = 0 plane peak is 0.5 pT.

Ey {ff. baseline=2cm, dipole depth=2cmE{H..(x, Y)}Iz-0 = J-T -~jp, IV(p) peak field=.5pTnoise=.2pT. 10 averages
- mean field ..... true - gradicrmter

e e2z"PJ(2.,r.p.%/ )p p estimate field cutwt

(29) 0.60

0.50 -
where J,(') is the Bessel function of the first kind of order
one. This integral was evaluated numerically in the ex- o 0.4o

amples to follow; it converges rapidly.
Typical instruments used for magnetic field measure-

ments have a noise floor of about 20 femtotesla '020/
(fT)/-iiz, so an instrument temporal bandwidth of 100 3
Hz would produce an rms noise output of about 0.2 pi- 0.10
cotesla (pT). Usually, in an evoked response paradigm 0_00
some averaging is done that for k averages would reduce 0 ' 2 3

the rms noise by 1/k-Maximum evoked fields from the (c)brain can be expected tobe about. 0.5 pT. xcb r in ca b e p e te w b e a ou . .5 p T Fig. 6. A s in Fig. 5, but the dipole depth is 2 cra .
Fig. 5 shows the z components pf the true field, gra-

diometer output, and expected field estimate as given by
(29), using the modified Hanning window for a second-
order gradiometer of baseline 2"¢m, dipole depth of 1 cm, troduced into I/T(a, fl) placing further constraints on

andc 10 averages. Fig. 6 is similar but assumes a dipole selection of p,,. Finally, the reader is referred to a recent

depth of 2 cm. In each case the temporal rms noise is 0.2 paper by Bruno et al. [7] in which an interesting but

pT, 5: = 0.95, and thedipole moment has been adjusted somewhat different approach to spatial filtering of gradi-

to produce a true field peak'of0:5 pT. Note that even ometer output is discussed. Their approach will also have

though the estimate mean appears good, especially for the significant problems with instrument noise; however, they

deeer souic6; -the ims e for is quite large, even for 10 deferred an analysis of the effect.

averagt.. Certainly for single event analysis of brain
evoked fields, instrument noise would be prohibitively VI. DISCUSSION

large, however, larger biomagnetic fields such as those It is clear that unless the gradiometer baseline is at least
from the myocardium might be recoered effectively using several times the source depth significant error will result
these techniques. ' from any attempt at detailed analysis of the magnetic fields

As mentioned in the Introduction, an) practical appli- ansing from current sources of interest. Although many
.ation of this technique would require ac.counting for gra- investigators have without doubt been impressed with the
dicmter coil area, bei.ause additional singularities are in- effectiveness of spatial common mode rejection, the data
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